

Problem solving through Coding, Applied Control and Mechatronics

SMOR CICLE FOR TEACHERS

The shoisearach do Mhimeor

An Roinn Oideachais agus Scileanna Department of **Education and Skills**

Accessing supports to date

- Webinar
- CPD Workshops
- To keep up-to-date: Join our mailing List

Technologies Teachers - Mailing List (2019)	
GDPR compliant subscription form. * Required	ogies
An tSraith Shóisearach do Mhúinteoirí Junior for teachers	
Mailing List Under the EU General Data Protection Regulation (GDPR), new rules on Data Protection will come into law in May 2018. Because of these new regulations, JCT is required to ensure that all data is fairly obtained and processed. If you wish to receive regular email updates, please fill in the required fields and click submit. By submitting this form, you agree to be part of Junior Cycle for Teachers Technologies mailing list.	vents CPD Workshops
First Name * Your answer	nent Resources
Surname *	
Your answer	

This evening we will...

- Appreciate how emerging technology can support student learning
- Consider an approach taken to problem solving coding tasks
- Code a micro:bit to perform simple tasks using inputs and outputs

Learning outcomes that are particularly relevant in this elective

Other learning outcomes may also be supported

What is Control Technology?

Controlled system definition:

A controlled system is where components are used to modify the behaviour of a system so it behaves in a specific way

(Applied Technology- Assessment Guidelines, page 9)

What is Control Technology?

(Engineering Specification- appendix D, page 27)

Using Control Technology to solve problems

Simple circuit

Easy build PCB kits

Microcontroller board

Explore the use of an emerging technology

Micro:bit microcontroller board What is it?

- Stimulus to drive learning
- It is a pocket-sized computer
- Pre-populated and pre-soldered
- Multiple inputs/outputs
- Options for break-out boards and additional soldering
- Free coding software
- Many students will have prior knowledge

Learning experiences through coding

Exploring the micro:bit

2

Using Breakout boards with a micro:bit

Why?

Applied Technology 2019/2020 CPD

- Ability to do more using a micro:bit (access to all processing pins for additional functionality)
- Limited power supply for output components attached directly to a micro:bit.
- Micro:bit can be reused in different breakout boards

Code Challenge: Open and close a barrier using a servo motor

Micro:bit edge connector breakout board

- 21 pins available from the edge of the micro:bit
- External inputs/outputs can be soldered or connected using jumper wires.
- Additional expansion boards can be attached
- Relatively low cost

https://youtu.be/bzm4zepbGAc

3

Two Channel Motor Driver Board L9110S

- Low cost motor driver board
- 2.5V to 12V DC supply
- drive either two DC motors or one 4 wire
 2 phase stepper motor
- Motors controlled using program code
- Relatively low cost

https://youtu.be/atKICzzdzkA

Edge connector pin description

Using a Two Channel Motor Driver Board L9110S with a micro:bit

Connecting the motor driver board to the edge connector board (one solution)

An tSraith Shóisearach do Mhúinteoirí JuniorCYCLE

Coding with micro:bit

Pair Task:

- Slot the micro:bit into the edge connector board
- Connect the motor driver board to the edge connector board
- Connect the micro:bit to your laptop

Let's code - https://makecode.microbit.org/#

An tSraith Shóisearach do Mhúinteoirí JuniorCYCLE

► 6

An tSraith Shóisearach do Mhúinteoirí
JUNIORCYCLE

kitronik-motor-driver

Blocks for driving the Kitronik micro:bit motor driver board

Learn more

kitronik-robotics-board

Custom blocks for www.kitronik.co.uk/5641 All-in-one

Learn more

An tSraith Shóisearach do Mhúinteoirí JuniorCYCLE

Adding Extensions

6

7

Coding with Micro:bit

Introduction activity: Use pins to turn an LED on/off

High output = 1 Low output = 0

on pin 🛛 PØ 💌 pressed	+	÷
digital write pin P2 🔻	to 1	
pause (ms) 3000 💌	+	+
digital write pin P2 🔻	to 👩	
		÷

Junior CYCLE

Transferring your HEX file to your micro:bit

Copy file from your download folder **Paste** file into micro:bit drive.

Planning for coding skills development

9

A context for code challenges

'More than 1 billion animals estimated dead in Australia wildfires' (ABC News, Jan 2020)

Coding Challenge 1:

A student has decided to make a model on an circulating fan to comfort people during extreme heat conditions. Design code to turn on the fan (motor) for **five** seconds and then turn off the fan.

lunior

lunior

Coding Challenge 1:

A student has decided to make a model on an circulating fan to comfort people during extreme heat conditions . Design code to turn on the fan (motor) for **five** seconds and then turn off the fan.

> Understand the problem/challengewhat information is needed to solve it?

Using code blocks, create the sequence to solve the problem

1. Plan

2. Code

3. Test

4. Apply

Determine if the solution is effective. Can it be better? If so, how?

Download your code to bring your solution to life

Coding Challenge 1:

A student has decided to make a model on an circulating fan to comfort people during extreme heat conditions . Design code to turn on the fan (motor) for **five** seconds and then turn off the fan.

10

Possible solution to the task.

Did you consider an alternative solution?

Pause and Reflect

A planning process

How effective was this planning process in facilitating creative thinking and problem solving?

How might this process support students?

lunior

Coding Challenge 2:

An enclosure is to be used to care for wild animals affected by the wildfires. Design code to open and close the enclosure door using the motor with display LEDs.

Understand the problem/challengewhat information is needed to solve it?

1. Plan

2. Code

3. Test

4. Apply

Using code blocks, create the sequence to solve the problem

Determine if the solution is effective. Can it be better? If so, how?

Download your code to bring your solution to life

lunior

Coding Challenge 2:

An enclosure is to be used to care for wild animals affected by the wildfires. Design code to open and close the enclosure door using the motor with display LEDs.

Possible solution to the task.

Did you consider an alternative solution?

Pause and Reflect

Future extension challenge:

Limit switches are to be incorporated to stop the motor (door) when it is open and closed.

What code solution would you propose?

Calibrating a sensor:

Introduction activity: Reading and digitally displaying the analogue value of a sensor.

Digital value **0** = **total darkness**

Digital value **1023** = **total brightness**

Why is it important to know this value?

12

Using a sensor with a breakout board:

Introduction activity: Using a **light sensor** to activate an output.

Using a servo motor

Why?

- Encourages creative thinking and problem solving
- Safe failure experience for students

How?

- Offering a high level of control
- Continuous rotation or limited range- e.g., 180°
- Servo speed/angle can be changed through code modification

Signal

13

Servos- Angular and Continuous

Angular Servo: Set range, e.g. 0° to 180°

Continuous Servo:

variable speed in both directions

All-in-one Robotics Board

- It can drive 4 motors (or 2 stepper motors) and 8 servos.
- All the usable pins of the micro:bit are broken out to a 2.54mm link header.
- The 17 available I/O pins allow other input devices, such as sensors, or output devices, such as ZIP LEDs, to be added to the board.
- Power is provided via either a terminal block or servo-style connector

https://youtu.be/EVowN8RN8nU

Using an all-in-one robotics board with a micro:bit

Coding Challenge 3:

14

Group Task:

In the context of the Australian wildfires, design a code solution that maximises the potential use of the robotics board.

Consider:

- Your focus; e.g., water distribution system, alert/alarm system?
- Which inputs and outputs to use?

Junior CYCLE

Having explored potential learning experiences through micro:bit have we engaged with problem-based learning?

How might this approach

benefit students?

Problem based learning

Setting Problems

Co-Design Learning Tasks

Discovery Learning

Valuing Questions

Transferring Knowledge & Skills

Ref: Bill Lucas, Teaching Creative Thinking

What do students think?

Our thanks to... Isabelle from St. Leo's College, Carlow

Junior CYCLE

Future Learning in Control Technology – Project realisation, expansion board opportunities

For further support visit: Senior Cycle micro:bit tutorials

riculum onli	ne				NCCA	CURRECTION
CHILDHOOD	RIMARY	JUNIOR CYCLE	SENIOR CYCLE		(mon	
ALT Resources	ALT	4 Support				
Support Material for Teaching and	NCCAL	Home » Souior cycle » Cur	rriculum » Support Material	for Teaching and Learning > 2. Al	T Resinances » ALT4 Suppo	m.
Learning	Video	lessons and html resou	irces to develop skills and	scaffolding classes around the	use of embedded syste	ms. The lessons
1. Computational Thinking	Read n	nore				
2. ALT Resources	Click	n the Vimeo symbol to	watch in full screen.			
ALT2 Support						
ALT3 Support	Stran	3 ALT4 : Embedded S	ystems scaffolding video	s		
ALT4 Support	-					
CSinP ALT	,01	Introduc-		02_Internal_I		P
3. The Evolution of	bom	NCCA	0	form model	0	1
Society			04	- i		-
Return to Homepage			\$ 11 V	D 01:27	\$ 2 V	
		-				
ADD TO VIEW MY LIPBOARD CLIPBOARD						
	tion	dice task		bles	ton_to_vana-	
	-		(U)	from mouth in the		
		05:45		05:30	- 2	
			0.00	and a second	\$ % V	•
	_					
	05	fitbit task		06_radio_co	mmunica 🔍 😶	-
		MICH I	0	perature_ser	isor	
		Allela I		from REDLA		1

Opportunities for Future Learning

Using a micro:bit (or a similar stimulus) and with a focus on enhancing research skills:

Consider where the learning could go next for your students?

Microcontroller board

Junior CYCLE

Next Steps

Back to school

Junior Cycle Applied Technology

- What I must do...
- What I could do...
- What new strategies could I use in my classroom?

Feedback form

http://jctregistration.ie/Feedback

